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Abstract

In this paper an algorithm for optimal charging of a valve-regulated lead-acid
(VRLA) battery stack based on model predictive control (MPC) is proposed.
The main objective of the proposed algorithm is to charge the battery stack
as fast as possible without violating the constraints on the charge current,
the battery voltage and the battery temperature. In addition, a constraint on
the maximum allowed voltage of every battery in the battery stack is added
in order to minimize degradation of the individual batteries during charging.
The convexity of the VRLA battery charging optimization problem is proven,
which makes the control algorithm suitable for efficient on-line implementa-
tion via solving a quadratically constrained quadratic program (QCQP). The
recursive feasibility and stability of the proposed control strategy is ensured.
The proposed algorithm is validated both through simulation tests and on
the experimental setup.
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1. Introduction

Valve-regulated lead-acid (VRLA) batteries are used in a wide-range of
applications from stand-by power supplies to automotive applications due to
their low-cost and high reliability [1, 2]. Their main role in standby appli-
cations is to provide energy in the case of power failure. When the power
is restored, the battery should be charged as quickly as possible in order to
prepare itself for the next power failure [3, 4]. This type of batteries is used
in other emerging applications like microgrids, where they are combined with
various renewable energy sources [5, 6]. In such cases it proves beneficial to
charge the battery as quickly as possible in order to increase gains in op-
timization of microgrid energy flows. Furthermore, VRLA batteries with a
low internal resistance are used in electric and hybrid electric vehicles where
they need to be charged as quickly as possible as well [7, 8, 9]. However,
fast charging typically comes at the cost of a reduced battery lifetime, which
is another important aspect in all the aforementioned applications, since it
directly influences the total operating cost of the system due to the fact that
battery needs to be replaced periodically [6].

The lifetime of a lead-acid battery is often considered to be a function of
materials and design parameters such as grid alloy and thickness, electrolyte
composition and strength, as well as the ratio between the quantity of mate-
rials constituting the positive and negative electrodes. Besides that, charge
and discharge conditions such as rate and depth also have a large impact on
lead-acid battery lifetime [10].

There are a few standard charging methods that have been used over the
past several decades, regardless of the significant development in technologies
from flooded to VRLA batteries [11, 12, 13]. Among them the constant-
current (CC), constant-voltage (CV) and constant-current constant-voltage
(CCCV) charge methods are considered as the standard charge methods,
where the CCCV method is the most commonly used among them [4, 14].

A fast charging can be achieved by using high charge rates and/or high
voltage threshold limits [15, 8]. However, in most cases, a fast charging has
negative influence on aging factors (water loss, grid corrosion and sulfation
of the negative electrode) [4]. Furthermore, when fast charging of VRLA
batteries is not adequately controlled, significant damage may occur, ulti-
mately resulting in a reduced battery life. Recharge control strategies which
minimize the battery life degradation can be achieved by putting constraints
on the battery states such as charge current, the battery voltage, the state-
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of-charge and the battery temperature which are typically provided by the
battery manufacturer [3, 16, 17, 18]. However, such constraints are rather
conservative as they are provided for the complete lifetime of the battery and
are typically assumed within the CCCV charging method [19].

In the past 10 years the community recognized the need for advanced
control algorithms for battery charging and the battery protection in ap-
plications where the battery is used as an energy storage, such as model
predictive control (MPC), due to its ability of satisfying battery constraints.
At every sampling instant, a finite-horizon optimal control problem is being
solved. The current state of the system and a plant model is being used to
find an optimal control sequence which results in an optimal behavior of the
system which satisfies constraints on control input and states over the finite-
horizon. The first control signal in the optimal control sequence is applied to
the plant and the whole procedure is repeated in a receding horizon manner
[20, 21]. In that way, new developments in the battery modeling and a new
knowledge about the influence of the particular battery constraints on the
battery lifetime can be exploited in a control design phase in a systematic
way.

MPC has been employed in various applications with a battery used as
an energy storage. In such applications the battery constraints have been
incorporated in the design phase to prolong the battery lifetime. In [22]
MPC has been used for demand planning in microgrids while satisfying all
the battery constraints. Authors in [23] have used predictive charge control
strategy for stationary photovoltaic system with battery storage to reduce
the photovoltaic injection into the grid without enlarging the battery size
and prolonging the battery lifetime by minimizing the dwell time at high
state-of-charge. In [24] authors proposed a combination of the optimal gen-
eration scheduling algorithm and MPC which achieved an efficient protection
of the VRLA battery bank from deep discharging and overcharging in a mi-
crogrid. Also, the papers [6] and [25] have presented MPC algorithm used for
optimization of different microgrids with flooded and lithium-ion batteries,
respectively, while keeping all the battery states under defined constraints.

MPC has also been used for charging of batteries which are connected
directly to the charger. To predict the future battery behaviour, authors in
[26] and [27] have used an equivalent circuit model. Authors in [28] used
a step-response model as an approximation of the electrochemical model of
the battery, while authors in [19] used the full electrochemical model. Us-
ing the electrochemical model can result in a better performance compared
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to using an equivalent circuit model. However an equivalent circuit model
enables for using the standard quadratic MPC framework. In [26] an addi-
tional temperature model of the battery is used together with an equivalent
circuit model which results in a non-linear MPC problem that is solved using
a genetic algorithm. Authors in [29] use MPC to prolong the battery life-
time by using a two-dimensional degradation map which describes battery
degradation processes as a function of state-of-charge and charging current.
The developed battery model is linearized in order to use the quadratic MPC
framework. All the aforementioned papers which are considering a battery
connected directly to the charger, apart from [26], provided only simulation
results.

From the practical implementation standpoint of the MPC, it is crucial
to ensure that the associated optimization problem can be efficiently solved
and that a solution exists at every time instant. The latter requirement is
usually referred to as the recursive feasibility of an MPC problem. With-
out recursive feasibility guarantees, MPC algorithm can work perfectly for
a while and then suddenly stop because a feasible solution does not exist
[20, 21, 30]. This problem is recognized in the case of MPC based battery
charging [28], where the constraints are implemented in the form of soft con-
straints in order to prevent a loss of feasibility. However, by introducing soft
constraints, the constraint violation is allowed even for the nominal model.
Even if the optimization problem is recursively feasible, MPC does not guar-
antee stability due to its finite-horizon. The stability has to be ensured in
a design phase by using a stabilizing constraints or a properly designed cost
function [20, 21]. The aforementioned papers considering MPC based bat-
tery charging are missing stability and/or recursive feasibility guarantees. In
addition, the papers that are solving a non-linear MPC problem are missing
guarantees that their solution is globally optimal.

To bridge this gap, in this paper we propose a non-linear MPC strategy for
charging of VRLA batteries which guarantees adherence to all the constraints
that are relevant for safe operation of a battery: the upper threshold voltage
level, the maximum battery temperature increase - compared to the ambient
temperature, the maximum charge current and the maximum state-of-charge.
Furthermore, guarantees on the recursive feasibility and stability are enforced
for the nominal model of the battery.

Unlike the existing MPC based charging strategies such as [19, 27, 28, 29]
the proposed method concentrates on charging of VRLA batteries instead
of lithium-ion batteries and provides recursive feasibility and stability guar-

4



antees. However, the proposed method is not limited solely to charging of
VRLA batteries, instead it can be applied for any type of battery represented
by an equivalent circuit model. The proposed method is similar to [26] and
[27] in the sense that it uses an equivalent circuit model of the battery. In
addition, similar to [26] a temperature model of the battery is included which
results in a non-linear MPC problem. However, we adopted a temperature
model, presented in [31]. Unlike [19, 26, 28] and [29], which also solve a non-
linear MPC problem, we prove that our formulation of the non-linear MPC
problem is convex and thus we guarantee attaining the global optimum. Fur-
thermore we formulate the nonlinear MPC problem as a convex quadratically
constrained quadratic program (QCQP) which can be efficiently solved by
the existing solvers.

Since some of the model states are not directly measurable one may use
a full-state observer to alleviate that problem. In this paper we rather resort
to converting the model to a non-minimal state space form which uses the
plant input and outputs as state variables.

The proposed algorithm is validated on a VRLA battery stack both
through simulation tests and experimentally. Due to a different behavior of
the individual batteries in the battery stack, additional constraints are added
to the MPC problem in order to keep the voltage of every battery below the
upper threshold voltage level provided by the manufacturer. This additional
constraint will cause the MPC algorithm to decrease the charge current if it
is expected that the battery voltage of a single battery will increase above
the upper threshold voltage level, which causes a slower charging compared
to a standard MPC method, but also prolongs the battery life.

This paper is organized as follows: Section 2 presents the models of a
VRLA battery together with the experimental setup. The proposed MPC
algorithm is presented in Section 3, while Section 4 presents both simulation
and experimental results. Section 5 concludes the paper.

2. Battery models and experimental setup

In this paper a hybrid electrical model of a VRLA battery is used for con-
troller design purposes together with a temperature model. In the sequel the
aforementioned battery models are presented together with the description
of the experimental setup and its parameter identification.
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2.1. Hybrid electrical model

Hybrid electrical model of a battery [32] (Fig. 1) is an accurate, intu-
itive and comprehensive electrical battery model. The model consists of a
capacitor (Ccapacity) and a current-controlled current source which models
the battery state-of-charge. In addition, similarly to Thevenin based models,
the model contains an RC network, which is used for modelling the transient
response of the battery. To connect state-of-charge to an open-circuit voltage
(VOC), a voltage controlled voltage source is used [32, 33, 34].
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Figure 1: Hybrid electrical model of a battery

To model the battery self-discharge an additional leakage resistor Rself

can be used in the battery model and it is a function of state-of-charge,
temperature and, frequently, number of experienced charge/discharge cycles.
The usable capacity presents extracted energy when the battery is discharged
from an equally charged state to the same end-of-discharge voltage. The
charge of the capacitor Ccapacity represents the whole charge stored in the
battery, i.e., battery state-of-charge. The real capacity of the battery de-
pends on the number of charge/discharge cycles, battery current, ambient
temperature and the storage time which has to be taken into account when
calculating the battery state-of-charge. It can be calculated by converting
the nominal battery capacity in Ahr to charge in Coulomb and its value is
defined as [33, 35]:

Ccapacity = 3600Kpnomk1(cycle)k2(temp), (1)

where Kpnom is a nominal capacity in Ahr, k1(cycle) is a correction factor
for number of charge-discharge cycles, k2(temp) is an ambient-temperature-
dependent correction factor. In this paper the capacity degradation due to
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charging with a high current [36] is neglected since the maximum current
value is kept below the manufacturer-declared one-hour charge current.

If the self-discharge is neglected, using the Euler-forward discretization
with the sampling time T , the hybrid electric model shown in Fig. 1, can be
described as the following discrete-time state-space model:VOC(k + 1)

Vfast(k + 1)
Vslow(k + 1)

 =

1 0 0
0 1− T

RfastCfast
0

0 0 1− T
RslowCslow

VOC(k)
Vfast(k)
Vslow(k)

+

+


−aT

Ccapacity
T

Cfast
T

Cslow

 Ibatt(k),

(2)

where the battery terminal voltage Ubatt is given as follows:

Ubatt(k) = VOC(k)− Vfast(k)− Vslow(k)−RserialIbatt(k), (3)

and Vserial, Vfast, Vslow and VOC are voltages at serial resistor, fast and slow-
transient RC parallel network and the open-circuit voltage, respectively and
the battery current is assumed negative during charging.

In general, state-of-charge (SOC) has a non-linear dependence on the
open-circuit voltage. However for simplicity in this paper we use the following
approximation which is often used in the literature [11, 37, 38, 39]:

SOC(k) =
100

a
VOC(k)− 100b

a
, (4)

where b is the open-circuit-voltage of an empty battery, while a + b is the
open-circuit-voltage of a full battery. If a better accuracy of the model is
needed a piece-wise affine approximation can be used.

More details on the the hybrid electrical model and its validation using
different charge and discharge currents, at different ambient temperatures
can be found in [32].

2.2. Temperature model of a VRLA battery

The ambient and battery temperatures are very important parameters
during the charging of a VRLA battery. These parameters define how long
the battery can be charged with defined current rates without damaging
it and reducing its life cycle. The actual value of the battery temperature
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is not known because VRLA batteries are sealed, and it is not possible to
insert the thermometer inside them. The temperature inside the battery is
not spatially uniform, but rather varies depending on the position in the
electrolyte. However, the temperature deviation from the mean value is not
significant, and accordingly, in this paper, it is assumed that the temperature
inside the battery has a uniform spatial distribution. Many researchers have
used measurements to determine the temperature outside of the battery that
most accurately indicates the temperature inside the battery cells. Dieter in
[40] measured the ambient temperature, the temperature of the battery case
and the temperatures of the positive and negative terminals during charging
of VRLA GEL 6 V, 160 Ah battery with current of 30 A. The measurements
showed that the negative terminal temperature had the highest value and
that it was the closest to the inner cell temperature. Authors in [41] have
measured inner battery temperature using a thermometer inserted during
manufacturing of the battery. The temperatures were monitored on the
surface of the negative and positive terminals, both end cell container walls
(parallel to the plates), a middle cell container wall and inside the cell at the
top surface of a plate. After measuring with various charge rates, it has been
shown that all the external temperatures followed the battery and the cell
temperature very well.

The battery temperature increases from the initial temperature to the
final temperature in an exponential fashion during the charging. The initial
battery temperature is equal or close to the ambient temperature. The final
battery temperature is a function of the charge current, the Joule heating
and charge thermal factor which presents heat generation during the charging
[31, 42].

Assuming that the ambient temperature is a constant, the discrete-time
temperature model for charging of VRLA battery is represented as follows
[31]: [

Tbatt(k + 1)
Ta(k + 1)

]
=

[
(1−QT ) QT

0 1

] [
Tbatt(k)
Ta(k)

]
+

+

[
KT

0

]
I2batt(k),

(5)

where QT is the charge thermal factor, KT is the Joule heating factor, Ibatt
is the charge current and Ta is the ambient temperature.
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2.3. Experimental setup

Fig. 2 shows a principal scheme of the test system designed for charging
of the VRLA 48 V battery stack, with a nominal capacity 45 Ah. It consists
of four 12 V Ritar [43] batteries connected in series. The battery monitor-
ing system consists of an acquisition card based on Microchip PIC18F2550,
which is used for measuring each 12 V battery voltages, the overall battery
stack voltage, the charge/discharge current, the temperature of the battery
stack negative terminal and the ambient temperature. Besides the acquisition
card, the battery monitoring consists of the corresponding voltage sensors,
the current transformer and two temperature sensors. Error tolerances for
the measurement system components are given in Tab. 1, where SOC is es-
timated by integrating the battery current over time with SOC initial value
calculated based on the open-circuit-voltage. DC 48 V Delta charger with
the PSC 3 controller [44] is used for charging. The communication between
PC and the controller is established using an additionally designed computer
program.

Figure 2: Experimental test system

2.4. Battery model parameters identification

To determine the open-circuit voltage (VOC) and the battery parameters
(Rserial, Rfast, Rslow, Cfast, and Cslow), the charge/discharge test was carried
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Table 1: Error tolerances of the measurement system

Quantity Range Maximum error

Battery voltage 7 V DC - 18 V DC ± 0.5 mV

Battery current 2 A DC - 65 A DC ± 65 mA

Battery current 0.5 A DC - 2 A DC ± 120 mA

Battery temperature 13.5 ◦C - 18◦C ± 0.005◦C

Battery temperature 18◦C - 25◦C ± 0.018◦C

Battery temperature 25◦C - 33◦C ± 0.025◦C

Battery temperature 33◦C - 40◦C ± 0.030◦C

out using the battery stack with the 10-hour charge/discharge current rec-
ommended by the manufacturer. A Fuguang DC variable resistor was used
for discharging in the experimental test system. At first, the battery stack
was discharged from a fully charged state. The discharge period of 60 min-
utes was altered with the resting period of 20 minutes. Similar pulse current
strategy was applied for charging of the battery stack. The threshold voltage
levels, provided by the manufacturer are used for stopping of the charging
and discharging processes.

The battery voltage tends to its open-circuit voltage after charge/discharge
current decreases to a near-zero value. The open-circuit voltage is normally
measured as a steady-state battery open-circuit voltage at various SOC
points. However, for each SOC point this measurement can take days. The
rapid method [45] for determining the open-circuit voltage parameters (a, b)
are used and the obtained values are given in Tab. 2.

The battery parameters (Rserial, Rfast, Rslow, Cfast, and Cslow) are ana-
lytically calculated from the corresponding voltage-time curves of the afore-
mentioned charge/discharge tests.

In order to improve steady-state accuracy of the model Rserial, Rfast,
Rslow are further estimated by using a Sigma-point Kalman Filter (SPKF),
with their analytically calculated values used as the initial guesses for the
estimation process. The parameter estimation is performed only once before
experimental tests. More on the estimation procedure used in this paper can
be found in [46]. The estimated values of the battery parameters are given
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Table 2: Parameters of the hybrid electrical model

Symbol Description Value

Rserial Serial resistor 0.1635 Ω

Rfast Fast-transient resistor 0.0806 Ω

Rslow Slow-transient resistor 0.0465 Ω

Ccapacity Battery capacitor 129600 F

Cfast Fast-transient capaci-
tor

3400 F

Cslow Slow-transient capaci-
tor

89145 F

a Open-circuit voltage
parameter

7.70

b Open-circuit voltage
parameter

44.00 V

Table 3: Parameters of temperature model of the battery

Symbol Description Value

QT Charge thermal factor 0.0017

KT Joule heating factor 1.416210−4

in Tab. 2.
The coefficients (QT , KT ), of the temperature model (5) are identified

from the experimental data obtained by charging of the battery stack with
two current rates (14 A and 18 A) using CCCV charge algorithm. The
experimental data is sampled with the sampling time T = 1 min. Using the
Constrained Linear Least Squares (CLS) method [47], the coefficients of the
temperature model are obtained and given in Tab. 3.

To account for a possible change of the parameters caused by aging of the
battery parameters can be updated based on the data collected after each
charging or they can be updated during charging using SPKF. However, in
this paper results are shown for constant parameter values.
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2.5. Validation of the battery parameters

In order to validate the parameters of the equivalent circuit model and
the temperature model a comparison between the measured data and the
data obtained by the model during pulse charging with the current 18 A is
shown in Fig. 3.
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Figure 3: Validation of the hybrid electrical model and temperature model during pulse
charging

The presented results show that there exists a discrepancy between the
model and the experimental setup which is especially visible at high levels of
SOC.

More details on parameter identification and model validation can be
found in [46] where the parameters of a similar battery are identified and it
is shown that there exists a discrepancy between the hybrid electrical model
and the experimental setup at low levels of SOC as well.
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3. Model predictive control for battery charging

Model predictive control is a control strategy where at each sampling
instant one solves a finite horizon optimal control problem over the future
behaviour of the system which is obtained using a model of the plant and
the initial state of the system. At each sampling instant an optimal control
input sequence is obtained and the first control input is applied to the plant.
The whole process is then repeated in a receding horizon manner [20].

A typical objective function in model predictive control often provides
some trade-off between the tracking error and the control input. Therefore
the objective function is chosen as follows:

J
(
x(k), I(k)

)
=

N−1∑
j=0

(
(100−SOC(k+j))−λI(k+j)

)
+P
(
100−SOC(k+N)

)
,

(6)
where λ ≥ 0 is a tuning parameter and P ≥ 0 is the weight on the terminal
cost.

However, in the case of battery charging, a typical objective of the op-
timization is to charge the battery as fast as possible without violating the
constraints in order to prolong the battery life. However minimum-time
problems are difficult to solve in practice. In the literature it has been shown
that standard MPC cost function with a low weight on the control input and
P = 1 results in a pseudo-minimum time battery charging [27]. Therefore to
approximate the minimum time charging the parameter λ can be set to zero
or a very small positive value.

The current is constrained to only allow charging of the battery with the
admissible charge current:

−Ibattmax ≤ Ibatt(k + j) ≤ 0, j = 0, . . . , N − 1. (7)

The battery voltage must be constrained below the maximum allowed
value provided by the manufacturer as follows:

Ubatt(k + j) ≤ Ubattmax, j = 0, . . . , N − 1. (8)

However, it is important to note that according to (3) the battery terminal
voltage depends directly on the applied current. Since the terminal voltage
is measured before applying the optimal value of current, measured value of
the battery terminal voltage Ũbatt(k) depends on the current as follows:

Ũbatt(k) = VOC(k)− Vfast(k)− Vslow(k)−RserialIbatt(k − 1). (9)
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For that reason the following constraint is also added to the optimization
problem.

Ũbatt(k + j) ≤ Ubattmax, j = 1, . . . , N. (10)

to ensure satisfaction of the voltage constraint for the whole interval [k +
j, k + j + 1).

To prevent overcharging of the battery the maximum SOC is constrained
below 100%:

SOC(k + j) ≤ 100%, j = 1, . . . , N. (11)

To prevent overheating and thermal runaway of the battery it is neces-
sary to control the battery temperature during charging. This goal can be
achieved by imposing a constraint on the maximum temperature increase
∆Tbattmax above the ambient temperature Ta:

Tbatt(k + j) ≤ ∆Tbattmax + Ta, j = 1, . . . , N, (12)

or by imposing a constraint on the maximum allowed temperature of the
battery Tbattmax as follows:

Tbatt(k + j) ≤ Tbattmax, j = 1, . . . , N. (13)

Both parameters Tbattmax and ∆Tbattmax can be adapted if necessary during
charging.

In order to satisfy the aforementioned constraints, model predictive con-
trol with the above mentioned cost and constraints, the hybrid electrical
model (2)-(4) and temperature model (5) is used. To predict the future be-
haviour, the electrical model of the battery requires information about the
battery SOC, the battery voltage Ubatt and the voltages Vfast and Vslow.
However, the only measurable variable is the battery voltage Ũbatt, while the
SOC is estimated by integrating the battery current over time with its initial
value calculated based on the open-circuit-voltage. The control input is the
battery current Ibatt(k). In order to avoid having a full state observer which
would complicate stability and feasibility analysis [48, 49], the hybrid elec-
trical model (2) is converted to a non-minimal state space realization which
uses previous values of the plant input and outputs as state variables. In that
way, only the past values of the battery voltage and the battery current are
needed to predict the future behaviour of the battery. However, this requires
storing the battery terminal voltage and current into computer memory to
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initialize the algorithm. The non-minimal state space model is for brevity
denoted as:

x1(k + 1) = A1x1(k) +B1u(k), (14)

where u(k) = Ibatt(k) and

x1(k) =



SOC(k)

Ũbatt(k)

Ũbatt(k − 1)

Ũbatt(k − 2)
Ibatt(k − 1)
Ibatt(k − 2)
Ibatt(k − 3)


, A1 =



1 0 0 0 0 0 0
0 −a2 −a1 −a0 b2 b1 b0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


, B1 =



K
b3
0
0
1
0
0


,

(15)

K = −100
T

Ccapacity
, K1 =

T

Cfast
, K2 =

T

Cslow
, K̃ = K

a

100
,

z1 =

(
1− T

RfastCfast

)
, z2 =

(
1− T

RslowCslow

)
,

a0 = −z1z2, a1 = z1 + z2 + z1z2, a2 = −(1 + z1 + z2),

b0 = Rserialz1z2, b1 = K̃z1z2−K2z1−Rserialz1−Rserialz2−K1z2−Rserialz1z2,

b2 = K1 +K2 +Rserial +K1z2 +K2z1 − K̃z1 − K̃z2 +Rserialz1 +Rserialz2,

b3 = K̃ −K2 −K1 −Rserial

In a similar way, the non-linear discrete-time temperature model (5) is
denoted as follows:

x2(k + 1) = A2x2(k) +B2u
2(k), (16)

where x2(k) =
[
Tbatt(k) Ta(k)

]T
, and the corresponding matrices A2 and

B2 are given in (5).
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The battery charging optimization problem can be written in the follow-
ing form:

min
U

N−1∑
j=0

(
(100− SOC(k + j))− λu(k + j)

)
+ P

(
100− SOC(k +N)

)
s.t.x1(k + j + 1) = A1x1(k + j) +B1u(k + j), j = 0, . . . , N − 1,

x2(k + j + 1) = A2x2(k + j) +B2u
2(k + j), j = 0, . . . , N − 1,

z(k + j) = Fx(k + j) +Gu(k + j), j = 0, . . . , N − 1

u(k + j) ∈ U , j = 1, . . . , N − 1

x1(k + j) ∈ X1, j = 0, . . . , N

x2(k + j) ∈ X2, j = 0, . . . , N

z(k + j) ∈ H, j = 0, . . . , N − 1,

x1(k +N) ∈ XT1,

(17)

where SOC(k+j) =
[
1 0 0 0 0 0 0

]
x1(k), U denotes the control input

sequence as follows:

U =
[
u(k) . . . u(k +N − 1)

]T
(18)

and sets X1, X2 are polyhedral sets representing the state constraints, U is a
polyhedral set representing the input constraint, while H is a polyhedral set
representing joint state-input constraints. The sets are defined as follows:

X1 = {x : H1x ≤M1}, (19)

X2 = {x : H2x ≤M2}, (20)

U = {u : H3u ≤M3}, (21)

H = {z : H4z ≤M4}, (22)

where
F =

[
0 1 0 0 Rserial 0 0

]
, G = −Rserial, (23)

H1 =

[
1 0 0 0 0 0 0
0 1 0 0 0 0 0

]
, M1 =

[
100

Ubattmax

]
, (24)

(25)
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H2 =

[
1 −1
1 0

]
,M2 =

[
∆Tbattmax
Tbattmax

]
, (26)

H3 =

[
1 0
0 −1

]
,M3 =

[
0

Ibattmax.

]
(27)

H4 = 1,M4 = Ubattmax. (28)

The sets and XT1 ⊆ X1 and X2 are positively invariant polyhedral sets under
a stabilizing control law

u(k) = C
(
100− SOC(k)

)
(29)

where C(100 − SOC(k)) ∈ U , ∀x1 ∈ XT1 and C is a negative scalar in the
following interval:

− 1

100

√
min

(
∆Tbattmax, Tbattmax − Ta

)
QT

KT

≤ C < 0. (30)

The set XT1 is defined as follows

XT1 = {x : HT1x ≤MT1}, (31)

where HT1 and MT1 are computed using the system dynamics (14) with the
stabilizing control law (29).

Remark: The optimization problem can easily be extended for charging
a battery stack by augmenting the optimization problem as follows

x1,i(k + j + 1) = A1ix1,i(k + j) +B1iu(k + j), j = 0, . . . , N − 1,

z1,i(k + j) = Hx1,i(k + j) + Fu(k + j), j = 0, . . . , N − 1

x1,i(k + j) ∈ X1,i, j = 1, . . . , N,

z1,i(k + j) ∈ Hi, j = 0, . . . , N − 1,

x1,i(k +N) ∈ XT1,i,

(32)

where i is an index representing a battery in the battery stack, x1,i, A1i and
B1i represents the states and the corresponding matrices in the hybrid elec-
trical model (15) respectively, where the battery parameters are computed
under assumption that four batteries connected in series result in a hybrid
electrical model with parameters given in Tab 2. The sets X1,i, Hi represents
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modified sets of state and joint state-input constraints for each battery while
XT1,i represents the corresponding positively invariant set subject to terminal
control law (29).

Clearly the optimization problem (17) is non-linear due to the non-linear
temperature model (5) of the battery. However, in the next subsection we
show that the optimization problem is convex, and thus its solving can be
performed efficiently.

3.1. Convexity of the battery charging optimization problem

In order to show the convexity of the optimization problem (17) the prob-
lem is rewritten in a so called batch dynamics form. Let Om×n ∈ Rm×n

denotes a zero matrix and let us introduce the following matrices:

Ã1j =
[
Aj−11 B1 . . . A1B1B1O7×max(0,N−j)

]
, (33)

Ã2j =
[
Aj−12 B2 . . . A2B2B2O2×max(0,N−j)

]
. (34)

Then the states x1(k+j) and x2(k+j) can be written in the batch dynamics
form as a function of the input sequence and the initial state as follows:

x1(k + j) = Aj1x1(k) + Ã1j [u(k) . . . u(k +N − 1)]T , (35)

x2(k + j) = Aj2x2(k) + Ã2j

[
u2(k) . . . u2(k +N − 1)

]T
. (36)

Both state constraints x1(k+j) ∈ X1 and terminal constraint x1(k+N) ∈ XT1
for the hybrid electrical model are represented by a polyhedral set. Therefore
convexity analysis is the same for both sets. By substituting the batch dy-
namics into the state constraints for the hybrid electrical model, the following
expression is obtained:

H1A
j
1x1(k) +H1Ã1jU ≤M1. (37)

The constraint (37) is affine in U and therefore convex. In a similar way, by
substituting the batch dynamics into the the temperature model constraints
(25) the following expression is obtained:

H2A
j
2x2(k) +H2Ã2j

[
u2(k) . . . u2(k +N − 1)

]T ≤M2. (38)

Due to the upper-triangular structure of the matrix A2, the following expres-
sion holds:

D =
[
1 0

]
H2Ã2j =

[
0 1

]
H2Ã2j =

= KT

[
(1−QT ) (1−QT )2 . . . (1−QT )j

]
.

(39)
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Therefore, the constraints for the temperature model (38) can be written as
follows: [

1 0
]
H2A

j
2x2(k) + UT Diag (D)U ≤

[
1 0

]
M2, (40)[

0 1
]
H2A

j
2x2(k) + UT Diag (D)U ≤

[
0 1

]
M2, (41)

where Diag denotes an operator returning a diagonal matrix with diagonal
terms formed from the vector given as its argument. The constraints (40)
and (41) are convex since D is positive semidefinite due to the fact that
QT ∈ [0, 1) and KT > 0.

The input constraint u(k + j) ∈ U can be written as follows

H3ejU ≤M3, (42)

where ej =
[
O1×j 1O1×N−j−1

]
and therefore it is convex.

The mixed state-input constraint z(k + j) ∈ H can be written as follows

H4

(
FAj1x1(k) + (FÃ1j +Gej)U

)
≤M4, (43)

which is also affine in U and therefore convex.
The cost function (6) can be written as an affine function of the input

sequence:

J(x(k), U) =
N−1∑
j=1

(
100−

[
1 0 0 0 0 0 0

] (
Aj1x1(k) + Ã1jU

) )
− λejU+

+ P
(
100−

[
1 0 0 0 0 0 0

] (
AN1 x1(k) + Ã1NU

) )
,

(44)

therefore the proposed model predictive control problem is convex. Further-
more, it can be written as a convex QCQP which can be efficiently solved by
the existing solvers.

3.2. Recursive feasibility of the battery charging optimization problem

From the practical implementation standpoint one of the main issues
when solving an MPC optimization problem online is to ensure that the
optimization problem will have a solution at every time instant, i.e started
form initially feasible state the optimization problem will be feasible at any
future time instant. This property is usually referred to as the recursive
feasibility of an MPC problem [20, 30].
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Given an initial feasible pair x1(k) and x2(k) at the time step k, there
exists the optimal sequence

U?(k) =
[
u?(k|k) u?(k + 1|k) . . . u?(k +N − 1|k)

]
, (45)

leading to a state-trajectory for the hybrid electrical model and the temper-
ature model of the battery respectively:

X?
1 (k) =

[
x?1(k|k) x?1(k + 1|k) . . . x?1(k +N − 1|k)

]
, (46)

X?
2 (k) =

[
x?2(k|k) x?2(k + 1|k) . . . x?2(k +N − 1|k)

]
. (47)

At the next time step the following holds: x1(k + 1) = x?1(k + 1|k) and
x2(k + 1) = x?2(k + 1|k). Since the terminal set XT1 and the set X2 are
positively invariant subject to the control law (29) and C(100− SOC(k)) ∈
U ,∀x1 ∈ XT1, the sequence

Ufeasible(k + 1) =

=
[
u?(k + 1|k) . . . u?(k +N − 1|k) C(100− SOC?(k +N |k)

] (48)

is a feasible sequence at the time step k + 1, where

SOC?(k +N |k) =
[
1 0 0 0 0 0 0

]
x?1(k +N |k).

Therefore the optimization problem (17) is recursively feasible.
To show that the corresponding optimization problem is stabilizing we

show that the proposed cost function

J(x(k), U?(k)) =
N−1∑
j=0

(
(100− SOC?(k + j|k))− λu?(k + j|k)

)
+

+ P
(
100− SOC?(k +N |k)

) (49)

is a Lyapunov function. Since the current u(k + j) ≤ 0 and SOC(k + j) ∈
[0, 100], the objective function is a positive definite function. It is constrained
from below as follows:

100− SOC(k) ≤ J
(
x(k), U?(k)

)
. (50)

From (14) and (15) it follows that

SOC(k + 1) = SOC(k) +Ku(k), (51)
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where K < 0. Since SOC(k + j) ≤ 100 the following condition holds 0 ≤
u(k) ≤ 1

K
(100 − SOC(k)). It follows that J(x(k), U?(k)) ≤

(
(N − 1)

(
1 −

λ
K

) + P
)
(100− SOC(k)). Therefore

(100− SOC(k)) ≤ J(x(k), U?(k)) ≤ β(100− SOC(k)). (52)

where β =
(
(N − 1)

(
1− λ

K
) + P

)
> 1.

The optimal value of the cost function at the time step k is J(x(k), U?(k)).
At the time step k + 1 the optimal value of the cost function is smaller or
equal to J(x?(k + 1|k), Ufeasible(k + 1)). Therefore the following holds

∆J = J(x?(k + 1|k), U?(k + 1))− J(x?(k|k), U?(k)) ≤
−
(
100− SOC(k)− λu?(k|k)

)
− P

(
100− SOC(k +N))+

+
(
100− SOC(k +N)

)(
1− λC + P (1−KC)

) (53)

If P is chosen as follows

P =
1− λC
KC

(54)

∆J ≤ −(100− SOC(k)), (55)

exponential stability is ensured.
However, due to the nature of the hybrid electrical model a less con-

servative P can be chosen. If SOC(k + N) < 100 the following condition
holds

100−SOC(k) ≤ 100−SOC(k+N) <
(
100−SOC(k+N)

)
(1−KC), (56)

∆J <−
(
100− SOC(k +N)(1−KC)

)
− P

(
100− SOC(k +N))+

+
(
100− SOC(k +N)

)(
1− λC + P (1−KC)

) (57)

A sufficient condition for negativity of (57) is

P ≥ K − λ
K

. (58)

If SOC(k +N) = 0 then

∆J ≤ −(100− SOC(k)), (59)

and therefore limj→∞ SOC(k + j) = 100.
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If λ = 0, the terminal set constraint can be omitted if Vfast(k) ≤ 0,
Vslow(k) ≤ 0 and u(k − 1) ≤ 0. In this case u(k + j) = 0, j = 0, ..., N − 1
is a feasible control sequence if x1(k) ∈ X1 and x2(k) ∈ X2. Accord-
ing to the battery temperature model (5) and hybrid electrical model (2)-
(4), the control sequence u(k + j) = 0 ensures that the battery SOC re-
mains unchanged while both, the battery temperature and voltage, expo-
nentially decay towards the ambient temperature Ta and the open-circuit-
voltage VOC , respectively. Therefore the system states evolve inside the set
X1 and X2 respectively. Furthermore mixed state-input constraint is also
satisfied with u(k+ j) = 0 since u(k−1) ≤ 0 and the battery voltage at time
step k + j can be calculated from the measured battery voltage as follows
Ubatt(k+ j) = Ũbatt(k+ j) +Rserial

(
u(k+ j− 1)−u(k+ j)

)
and consequently

Ubatt(k + j) ≤ Ũbatt(k + j) and the optimization problem (17) is recursively
feasible. Furthermore ∀x2 ∈ X2 and ∀x1(k) ∈ int(X1) where int denotes
strict interior of the set, besides the control sequence u(k + j) = 0 there
also exists a feasible control sequence where the first element is some value
from the interval −Ibattmax ≤ u(k) < 0 which keeps the system states x1
and x2 inside the sets X1 and X2 respectively. Since the first element of the
sequence u(k) < 0 is feasible in the interior of the set X1, the SOC increases
and as a consequence the cost function (44) decreases. Let us now consider
the case when the system states x1 lie on the border of the feasible sets X1.
If SOC = 100% the control sequence u(k + j) = 0 is the optimal control
sequence and the battery is fully charged. In the case when SOC < 100%,
the control sequence u(k+ j) = 0 will drive the states of the battery temper-
ature towards the ambient temperature Ta and the battery terminal voltage
towards the open-circuit-voltage Voc which lie in the interior of the sets X1.
In the interior, a sequence with first element u(k) < 0 becomes feasible which
results in charging of the battery. Therefore SOC converges to 100%.

In the sequel the simulation and experimental results are presented.

4. Simulation and Experimental Results

The proposed MPC algorithm (17) is implemented in Matlab using Yalmip
and Sedumi optimization software [50, 51] and it is tested both in simula-
tion and in the experimental setup (Fig. 2). The corresponding terminal set
is computed using MPT toolbox [52]. When computing the terminal set it
is sufficient to take into account state and input constraints since the joint
state-input constraint is automatically satisfied due to the form of terminal
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control law (29). The prediction horizon N is selected to be equal to the con-
trol horizon. Since the terminal constraint is used as a stabilizing ingredient
an increase of the prediction horizon may lead to a larger feasible set and
therefore to a better performance. However, increasing the prediction horizon
contributes to an increased computational burden. Therefore the prediction
horizon N can be seen as a tuning parameter between the computational
burden and the control performance. Numerical values of MPC parameters
are shown in Tab. 4, while the corresponding terminal set is shown in Fig 4.

Since stationary VRLA batteries with thick electrodes have been used
in the experimental setup under normal operating conditions, the maximum
permitted increase of the battery temperature ∆Tbattmax is set to a value
below 10 ◦C in all the experiments to prevent the thermal runaway of the
battery [18]. However, the temperature constraint can be selected to be
different according to the battery technology and operating conditions.

Figure 4: Terminal set: A positively invariant set for the system (14) subject to the control
law (29)

.

The simulation and experimental results of charging VRLA battery stack
using the MPC algorithm with ∆Tbattmax = 7 ◦C are given in figures 5 and 6
where battery voltage Ubatt, the charge current Ibatt, the battery temperature
Tbatt, and the battery SOC are shown.
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Table 4: Parameters of model predictive control algorithm

Symbol Description Value

N Prediction horizon 5

Ibattmax Current constraint 17.20 A

Ubattmax Voltage constraint 54.50 V

SOCbattmax SOC constraint 100%

λ Control input weight 0

P Terminal cost weight 1

C Terminal control law
gain

−10−6

Charging of the battery using the proposed MPC algorithm took 129
minutes in simulation and 134 minutes in the experiment. This difference is
partly a consequence of the discrepancy between the battery model (2) and
the experimental setup. In both cases the battery temperature is below the
maximum allowed temperature of the battery.

During charging (figures 5 and 6) the battery temperature did not reach
the temperature constraint. However, in general, the temperature constraint
is important during battery charging [28] especially if high charging current is
used. To demonstrate that the proposed algorithm is capable of keeping the
battery temperature below the maximum allowed value a maximum charging
current can be increased or the temperature limit can be decreased. We
chose the latter approach and set ∆Tbattmax to 3.5 ◦C. The simulation and
experimental results are shown in figures 7 and 8, respectively.

During experimental test shown in Fig 8 when the constraint on the max-
imum temperature is active, the algorithm decreases the current to keep the
battery temperature on the corresponding limit. However, due to discrep-
ancy between the model and the experimental setup the battery temperature
decreases below the maximum allowed temperature and a higher charging
current is allowed for a short period of time which results in a reduced charg-
ing time compared to simulation (Fig 7).
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Figure 5: Simulation results: Charging of the battery stack using the MPC algorithm
considering the constraints on the maximum voltage of the battery stack, the maximum
current, the maximum temperature increase above the ambient temperature and the max-
imum SOC

4.1. Charging of the VRLA battery stack

The initial voltages of individual batteries in a battery stack are usually
somewhat different. Therefore, the ability to measure the voltage of each
battery is very important when charging the battery stack to prevent over-
charging of individual batteries. In order to show that, experimental results
of the MPC algorithm with different initial voltages of the batteries in the
battery stack, are shown in Fig. 9.

The voltage of each battery in the stack is different and their behaviours
are not the same [12]. Due to various values of the electrolyte saturation
in the batteries, the voltage differences are present even in completely new
batteries.
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Figure 6: Experimental results: Charging of the battery stack using the MPC algorithm
considering the constraints on the maximum voltage of the battery stack, the maximum
current, the maximum temperature increase above the ambient temperature and the max-
imum SOC

MPC algorithm keeps the voltage of the battery stack below threshold
voltage level (54.50 V) provided by the manufacturer. However, even though
the sum of voltages of the individual batteries is below the maximum allowed
value, the voltage of some batteries in the stack exceeds the maximum al-
lowed level provided by the manufacturer (13.625 V), as shown in Fig. 9.
Batteries which violated this constraint during charging were exposed to an
increased oxygen generation and grid corrosion on the positive electrode and
to the hydrogen generation on the negative electrode. Named effects cause
an increase of the degradation effects within the battery [13], and premature
loss of the battery capacity.

The proposed MPC algorithm presented in the previous section can be
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Figure 7: Simulation results: Charging of the battery stack using the MPC algorithm
with a lower temperature limit to show that the algorithm is capable of handling the
temperature constraint

effectively used for charging VRLA battery stacks by using the hybrid elec-
trical model (2) to model the behaviour of each battery in the stack and by
putting additional constraints on the maximum voltage of each battery in
the stack (Ubatti ≤ 13.625 V). In that way the MPC algorithm has a positive
impact on reducing the degradation effects in the battery stack.

Application of the MPC algorithm with this additional constraints can
slightly extend the charging time of the battery stack, but it can significantly
prolong its lifetime.

Figures 10 and 11 shows simulation and experimental results of charg-
ing of the battery stack using the MPC algorithm with the aforementioned
constraints while Fig. 12 shows the corresponding voltages of the individual
batteries in the battery stack. The MPC algorithm decreases the charge cur-
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Figure 8: Experimental results: Charging of the battery stack using the MPC algorithm
with a lower temperature limit to show that the algorithm is capable of handling the
temperature constraint

rent (figures 10 and 11) when the battery voltages in Fig. 12 become close to
the maximum allowed value. It can be seen that the battery with the high-
est voltage value did not violate the voltage constraint in simulation while in
the experiment individual batteries slightly violate the aforementioned con-
straints. However, the violation of the constraints is not significant and it
happens due to discrepancy between the battery model and the experimen-
tal setup. It can be concluded that the MPC algorithm keeps the battery
voltage, temperature and current within the safe limits and can be effective
in reducing battery degradation effects and prolonging the battery lifetime.

5. Conclusion

In this paper a new charging method for VRLA batteries based on MPC
is proposed. The hybrid equivalent circuit electrical model together with
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Figure 9: Experimental results: By imposing constraint on the maximum voltage of the
battery stack (54.5V) does not necessarily prevent the voltage constraint violation for
every battery in the stack (13.625V)

the temperature model are used in the algorithm for prediction of the fu-
ture behavior of the battery, where the hybrid electrical model is converted
to a non-minimal state-space realization in order to avoid using a full-state
observer. Even though the presented charging method is developed for charg-
ing of VRLA batteries it can be easily adapted to other types of batteries
represented by an equivalent circuit model.

The objective of the control algorithm was to charge the battery as fast
as possible without violating the following constraints: manufacturer upper
threshold voltage level, the maximum battery temperature increase - com-
pared to the ambient temperature, the maximum charge current and the
maximum SOC. The proposed charging algorithm is proved to be convex,
recursively feasible and the closed-loop stability is guaranteed.
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Figure 10: Simulation results: Charging of the battery stack taking into account that the
maximum allowed voltage for every battery in the stack is less than 13.625 V

The constraints provided by the manufacturer (a relatively low recom-
mended current), caused that the presented results fully resemble the CCCV
method since the maximum temperature constraint was not reached. The
charging was driven solely by the maximum current and the maximum volt-
age constraint. By relaxing the constraints provided by the manufacturer
(allowing a higher charge current), the battery temperature limit would be-
come an important issue during charging. To show that the algorithm can
cope with such a case, the temperature constraint was tightened. The al-
gorithm adjusted the charging current to respect a tightened temperature
constraint.

In addition, the MPC algorithm is extended for charging the VRLA bat-
tery stack by taking into account the maximum allowed voltage of individ-
ual batteries in the battery stack. The simulation and experimental results
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Figure 11: Experimental results: Charging of the battery stack taking into account that
the maximum allowed voltage for every battery in the stack is less than 13.625 V

showed that the proposed MPC algorithm managed to charge the battery
taking into account all the aforementioned constraints.

The main benefit of using the proposed MPC algorithm compared to stan-
dard CCCV method is in its ability to take into account the constraints on
the maximum temperature and the maximum voltage of individual batteries
in the battery stack. If a single battery is charged and the battery tem-
perature is not an issue during charging, there is no difference between the
proposed algorithm and the CCCV method. However, the constraints in the
MPC algorithm can be set according to the new knowledge about influence
of the constraints on the battery lifetime, still providing the aforementioned
guarantees.
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Figure 12: The voltages of the batteries used in the battery stack during charging with
the MPC algorithm taking into account the maximum allowed voltage for every battery
in the stack: Simulation and experimental results
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